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J. Phys. A: Math. Gen. 19 (1986) 775-787. Printed in Great Britain 

The dependence on external field of the correlation functions 
and susceptibilities of the one-dimensional SOS interface? 

J Stecki and J Dudowicz 
Institute of Physical Chemistry of Polish Academy of Sciences, Warsaw, Kasprzaka 44/52, 
01-224 Warszawa. Poland 

Received 1 July 1985 

Abstract. A numerical study of the SOS interface in two dimensions extends the asymptotic 
analysis of van Leeuwen and Hilhorst. Global properties, one-point functions, and two- 
point correlations computed earlier, including the direct correlation function and the 
susceptibilities, are parametrised and their dependence on the external field is analysed in 
detail. Intrinsic properties of the interface, including the new longitudinal correlation 
length, are discussed. 

1. Introduction 

The statistical theory of the interfacial phenomena faces a well known difficulty posed 
by the fluctuations of the interface (see e.g. Rowlinson and Widom 1982, Abraham 
1982, van Leeuwen and Hilhorst 1981, Jasnow et a1 1982; for a recent review see 
Binder (1983)). A system separates into two phases owing to an external (e.g. gravita- 
tional) field which localises the position of the interface in space. The field will also 
damp the fluctuations of the interface about this position. Hence any quantity such 
as the density profile depends on the amplitude of the external potential and immedi- 
ately the question arises as to which quantities may be accepted as intrinsic properties 
of the interface. The fluctuations of the interface are particularly strong in two- 
dimensional (d = 2) systems with one-dimensional interfaces ( d ,  = 1). Here we study 
in detail a particularly simple system, the solid-on-solid (SOS) lattice model, which 
replaces the interface of a lattice gas by an array of columns of occupied sites. In two 
dimensions this is the Temperley string (Temperley 1952) which, however, we place 
in an external field. Analytic and numerical results have been obtained and some 
asymptotic analysis for small external field is also available (van Leeuwen and Hilhorst 
1981). We use the method of the transfer matrix which is constructed and diagonalised 
numerically; for the nearest-neighbour interactions this is a straightforward and accur- 
ate technique. In § 2 we give the working equations, and give the results for the global 
quantities of the system. In § 3 we give the results of the scaling of distances for the 
z-dependent local susceptibility and for the two-point density-density correlation 
function H( 1,2). Then we parametrise its inverse, the direct correlation function 
C (  1,2). Also in § 3 we demonstrate the existence of a longitudinal correlation length 
611 which in the limit of the vanishing external field becomes identical to the longitudinal 
correlation length recently discovered by Ciach (1985) for the zero field case. 

t Supported by the Research Program 03.10.1.2.1 of the Polish Academy of Sciences. 
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The remarkably transparent structure of the direct correlation function matrix 
C(z,, z2) is discussed. 

2. The transfer matrix and asymptotic results for the SOS model 

The SOS model of a strip of height M and horizontal length L is a collection of L 
columns ( i  = 1,2, . . . , L) of heights 0 S hi 4 M interacting through a nearest-neighbour 
interaction, with the partition function 

L 

z = C . .  .E n exp[-P&lhi-hitIl-pHeXt(i)] 
h ,  hL i = l  

where PE = 2 P J = 2 K > O  and the periodic boundary conditions are assumed in the 
horizontal direction along the x coordinate. We take x = integer, 0 S x S L. Let the 
external potential Hex'( i )  result from the gravitational potential 

~V"" ' ( z ,x )=~mg(z -z , )  (2.2) 

acting on each filled site of a column; thus 

PHex'( i) = G (  hi - h0)2 (2.3) 

where ho= zo-f, G = p m g / 2  and the energy zero has been shifted (by LGhi). This 
adjustment ensures that there is no change in the free energy if the interface is shifted 
vertically by an infinitesimal amount 

S lnZ/Sho=O. (2.4) 
The transfer matrix has been used before (van Leeuwen and Hilhorst 1981, Dudowicz 
1984, Dudowicz and Stecki 1980, 1985, Stecki 1984); for our discussion here the 
asymptotic result (van Leeuwen and Hilhorst 198 1) is especially important. We define 
a symmetric (column-column) transfer matrix by 

T,, =exp[-G(n-1-ho)2/2] exp(-2Klm-n() exp[-G(m-1-h,)2/2] (2.5) 
of dimension M + 1 which is diagonalised numerically, and its eigenvalues A I  > h2 > 
. . . and corresponding eigenvectors x'l), x ( ~ ) ,  . . . , are found to be 

Tx'" = h ,~" ' ,  A l > h 2 >  . . . ,  I = l , 2  ) . . . ,  M + l .  (2.6) 
We take L+ CO; M finite. A finite M is equivalent to two impenetrable walls at z = 0 
and z = M + 1 limiting the fluctuations of the interface. Therefore for each fixed value 
of the external-field amplitude G we increase the 'vertical' size M until we are satisfied 
that the interface is pinned by G and not by the finite size M. All the quantities we 
need can be expressed in terms of the eigenvalues and eigenvectors; the density profile 

d z ) =  c A h )  
h a z  

and probability of a height h 

p (  h )  = [ X p y .  

In the asymptotic analysis of van Leeuwen and Hilhorst (1981) the finite height 
differences were replaced by derivatives and the differential equation for the harmonic 
oscillator was obtained, in the variable 

y = G"4(2S)"2(h - ho), S = sinh K .  (2.9) 
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This analysis can be applied to several of the quantities we consider and invariably 
the first term agrees perfectly with the coefficient extracted from the numerical data. 
Since the accuracy of the data obtained with the transfer matrix method is limited 
only by the performance of the computer in the diagonalisation procedure, the extrac- 
tion of the coefficients is easy and reliable. 

Figure 1 shows the convergence of several eigenvalues towards A,,, (G  = 0) = 
coth K in perfect agreement with the prediction of van Leeuwen and Hilhorst (1981). 
Figure 2 shows the density profiles for various fields in the same range, scaled with 
the variable y defined by (2.9); clearly p(y) falls on a common curve (erfc(y) in fact), 
with a derivative p ’ ( y  = 0) = ( l l f i ) .  Another important one-point function is a local 
susceptibility 

‘\P 
‘ A 6  

(2.10) 

which also arises in the sum rules for the two-point density-density correlation function 
6 ( z i ,  2,; k )  discussed in 0 3. In (2.10) it is understood that at each field point ‘2’ the 
increment of -pVeXt(2) is the same. Summing over rl one obtains the ordinary (total) 
susceptibility 

(2.11) 

where again the increment of Vex‘ must be the same at all lattice points. Incidentally 
this is different from 

(2.12) 
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Figure 2. The density p ( y )  against y = ( 2  sinh K v 6 ) ’ I 2  h ,  at T = 0.3Tc, 2K = 2 p l =  
2.937 912. Data points: f, ( G  = 0.416 66 x lo-.’), 0, ( G  = 0.083 333 x and A, ( G  = 
1.666 66 x 10 ’), fall on a common curve. 

The local z-dependent susceptibility scales very well with the variable y and 

with 
x ( z )  = x ( z 0 + t )  exp(-ay2) 

a = l + a , G +  . . . ,  

(2.14) 

(2.15) 

X ( Z , + ~ ) = ( S / ~ T ) ” ~ G - ~ ’ ~ + ~ , ~ - ~ ’ ~ G - ~ ’ ~ + ~ ~ ~ - ~ ’ ~ G ~ ’ ~ +  . . . . (2.16) 

Figure 3. The coefficient a,  determined from (2.14)-(2.15) for T=0.3Tc,  2 K  = 2 p J  = 
2.937 912, 0.416 66 x l O V 4 s  G s 1.666 66 x strip height 41 s M s 5 5 .  a ,  extrapolates 
to a common value a, = 1.73 at a = O+. 
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Figure 4. Test of validity of (2.16). The ordinate equals b, + 6, m; at T = 0.3 Tc, 2 K  = 
2pJ = 2.937 912, b, = 0.747 912, b, = 1.182. Data were obtained for 2 9 s  M s 5 5 ,  0.416 66 x 

G s  1.66666X lo-’. 

The local susceptibility at any given value of z diverges and figures 3 and 4 show how 
(2.15) and (2.16) are established. Finally we find by summing (2.14) 

x T = 2 / G +  wG- ‘ / *+ .  . . (2.17) 

with w a very small number at low temperatures (at T = 0.3 T,(d = 2) for which 
2K = 2pJ  = 2.938, w = 5 .55  x No G-3’4 power could be detected at our values 
of G. Thus the one-point functions appear to follow a universal behaviour, and are 
scaled by the van Leeuwen variable y, defined in equation (2.9). The susceptibilities 
diverge as G-’ or G-3/4. 

3. The two-point correlation functions 

The density-density correlation function N = (Sp(  1)Sp(2)) or 

H(1,2)  = SK‘(l, 2)Pl(l)+PZ(l, 2) -Pl(l)P1(2) (3.1) 
is a function of three variables z,, z2, Ax = r f 2  and its Fourier transform can be computed 
directly for L+ CO from eigenvalues and eigenvectors of T :  

f i ( z l ,  z2; k , )  = exp(ik,Ax)N(z,, z2, Ax) (3.2) 
all x 

= H ( A x = O ) +  C ( Z ) f I ( k )  
I 3 2  

= c C(l ) [ l+f i (k) l  
I 3 2  

(3.3) 
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At a given amplitude of the external field, G, fi is a smooth function of k and for 
each value of k, including k = 0, peaked about z ,  = z ,  = z ,+ i .  Introducing the variables 
y, and y2 after equation (2.9), we find a parametrisation of fi in terms of the variables 

y = %Yl + Y A  Y 1 2  = Y,-Y,, (3.7) 

fi( Y y l 2 )  = fi(0,O) exp(-ay:,) exp(-A,Y2-A2Y4-A4Y-6). (3.8) 

f i (0 ,O)  = (S/m)(H* + H I G + .  . .), 

of the following form: 

As V@ +. 0, we find 

(3.9) 

a = a,+ a I ( A z ) - + .  . . . , (3.10) 

A o = A o o + A 0 , ( A z ) ~ + .  .., (3.11) 

A , = A , o + A , l ( A z ) ~ + .  . . , (3.12) 

A 4 = A 4 , + A , , ( A z ) m + . . . ,  (3.13) 

where the coefficients aI, A,,,  A , , ,  A4 ,  depend on Az = / z2-z11 .  Figures 5-7 show how 
the parameters H*, H,, a,, A,, were established. A,, and A40 are much smaller, e.g. 
at T = 0.3 T,, Azo/Aoo = -0.0232, A4o/Aoo = -0.000 93. This parametrisation is not very 
satisfactory because the dependence on a is rather strong and moreover the 
coefficients depend on Az. As we describe below, a similar parametrisation of C is 
much easier and much more satisfactory. Nevertheless a numerical diagonalisation of 
the matrix (3.8) produces A,,, which agrees within 10% with A,,, of the exact matrix 
2. 

O”/ 

I 
0 0.m 0.01 0.02 0.03 

61/2 

Figure 5. Variation of the largest element of the fi  matrix with ,E. f i (  Y = 0,  y,, = 0) 
G / s i n h  K varies linearly with fi. At T = 0.3 T,, 2K = 2pJ = 2.937 912, the intercept 
H *  = 0.3465, the slope H ,  = 0.7826. Data were obtained for 29 s M s 55 ,  0.416 66 x s 
G S 0.333 333 x lo-! 
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Figure6. The parameter a (from (3.8)) computed as -y;: InlG( Y = 0, y l 2 ) / i ( 0 ,  O ) /  plotted 
against a. Curves are labelled with values of Ar = (z2- z,( and appear to converge to a 
common a value at G = O .  Data were obtained for the same range as in figures 1-5. 

Figure 7.-The coefficient A, (see (3.8)) determined from finite differences of the function 
-y;lIn(H( Y, y , , ) / H (  Y=O,  Y , ~ ) (  and plotted against a. The intercept A,= 1.6121 at 
T = 0.3 T, appears to be common to all y , * .  Curves are labelled with values of Az = lz2 - z,l. 
Data were obtained for the same range as in figures 1-6. 

The k dependence of Z? is regular and not in contradiction to the predictions of 
the capillary wave theory (Evans 1979, Weeks 1977, Wertheim 1976) concerning the 
form 

G = constant, "AP 
PmgAp + PYk2' 

B = R( k = 0) (3.14) 

but a detailed analysis of h(k, G) remains to be carried out. Summing over z2 we 
obtain the local susceptibility i ( z , ,  k) and summing over z1 we obtain the k-dependent 
total susceptibility which has been analysed. The working equation now follows directly 
from (3.3)-(3.6) by summing over zl and z2 and changing the order of summation. 
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Then we found that the sum over eigenvalues ( I  2 2) reduces effectively to the I = 2 
term with an excellent accuracy if G is not too large. Rewriting (3.6) in terms of 
p ( k )  = 2(1 -cos k )  = k2 - k4/12+.  . . and A = 1 - r2,  we find 

A(2-A) 
A 2 + ( 1  - A ) p ( k )  i ~ (  k )  = D( I = 2) + a , v E + . . . .  (3.15) 

Certainly this form of i T ( k )  agrees fully with the predictions of the capillary wave 
theory. For small G we find 

A = G / S -  rz2G - r23G2/3 -. . . , 

D ( I  = 2 )  = 1/ (4  S G ) + d 2 0 + d 2 1 f i + .  . . . 

(3.16) 

(3.17) 

Hence the leading term follows: 

,&( k ) / i T (  k = 0 )  = ( 1  + [: k2)- '  (3.18) 

with 6; = 2S2/2G which allows for the identification 

pyeff = 2s2. (3.19) 

Computing the derivative of , f T ( k )  with respect to k 2  we find directly from (3.15) 

P y e f f = 2 S 2 + g 1 v E + .  . . . (3.20) 

This relation is shown in figure 8 taken from numerical data. It is remarkable that the 
field dependence should be so strong. This value, 2S2, does not agree with In A,,, = In 
coth K because it incorporates the angle dependence of the surface tension and agrees 
with the SOS limit of the exact results of Abraham (1981), Abraham and Reed (1974) 
and Fisher et a1 (1982) as described by Binder (1983). 

The parametrisation of 6 was remarkably straightforward. First, we recall the 
exact relation for the SOS system in two dimensions (Stecki 1984), 

C(Z1, z2, Ax) = 0, for IAxlz 2, (3.21) 

from which it follows that 

E (  ~ 1 ,  22, k , )  = CO+ 2Cl COS k = CO+ 2C1 - C,p( k ) .  (3.22) 

The two matrices CO and C, refer to Ax = 0 and Ax = T1, respectively. Introducing 
the variable 2 by 2 2  = z1 + z2 and Az = Iz2- zll we find that all three matrices scale 
their Z dependence with the external field according to the variable introduced by 
van Leeuwen and Hilhorst (1981), equation (2.9). However, the variable Az refuses 
to be scaled in the same manner. Hence 

E(z l ,  z2 )  = G-'l4M exp(AoY2+A2Y4+A4k.6) (3.23) 

where A. = 1, A2 = A4 = 0 for G + O+, and the new matrix M depends only weakly on 
the external field 

M = tu'*'' + D. (3.24) 
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Figure 8. Variation with of the effective surface tension, Pyea, computed from (3 .15 ) .  
The arrow indicates the value 2 sinhZ K = 8.464 683 316 which is the value of Byea for 
f i  = 0. The slope g, = 11.767 367. The data were obtained for 35 s M S 129 and 1.6666 x 

G s 3.3333 x 

Here D is a tridiagonal (symmetric) matrix, D=O unless Az=O,  1, D =  
D',"'GKr(Az, O)+D',"' B K r  (Az, l ) ,  where the index v distinguishes between CO, C ,  and 
t?(k =0)  = C0+2C,; similarly the number t is different in these cases. 

Hence we find a remarkably simple structure; we recall that a matrix of the form 
u ~ ~ ' '  is the inverse of a tridiagonal matrix, thus M = D + (D')-', with 

1 + u 2  1 - u 2  + SKr(Az, I)( U -:)-I]. (3.25) 

The inverse of C is H and the inverse of M is D'( U + LID')-'; DD' is a pentadiagonal 
matrix and M-' will not have a simple structure immediately apparent. Figure 9 
illustrates equation (3.23) and demonstrates how A. tends to 1, and how the slope of 
Ao(m) depends on lAzl. A, and A, (not plotted) are negligible, certainly so at 
"<0.05, and tend to zero as a and as G, respectively. Figure 10 shows the 
determination of the longitudinal correlation length ( B  = 1/&,  U = e-') by plotting the 
ratios of C for Y = 0 or Y = 0.5. This new correlation length seems to be an intrinsic 
quantity describing the temperature-dependent structure of the interface. It appears 
to have a limit for m+O, common to even and odd values of lAzl and common to 
all three matrices CO, C, and t?( k = 0). Moreover, the numerical value agrees very 
well with the analytic result recently obtained by Ciach (1985) who discovered the 
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Figure 9. The coefficient A, in (3.23) computed from 6.(Az, Y )  = (Az ,  0) exp (A ,Y2) ,  
plotted against n. Curves are labelled with value of Az. The range of G parameters is 
the same as in preyious figures. A, appears to vary linearly with a common intercept 
A, = 1. Scaling of C with the variable Y is confirmed. 

3.601 

B 

0 01  0 2  0 3  0 4  X l O *  
t”Z 

Figure 10. The-inverse of the new longitudinal correlation length B = 1/[,, determined 
from ratios of C ( A z ,  Y = 0) with A z  = 0,l excluded. The linear variation with d‘?? and a 
common value of U = eCB at a = O+ are apparent. Data are for the same range as previous 
figures. The zero field value u ( 0 )  = 0.279 08 gives B(0)  = 3.578 84; the common intercept 
agrees very well. El, from the ratios C(3,0)/C(1,0) (matrix C, only); A, from the ratios 
C(3,0)/C(2,0) (all three matrices C); f ,  from the ratios C(4,0)/ C(2,O) (all three matrices 
C ) ;  0, 0, from the ratios C(5,0)/C(3,0) (0, matrix CO; 0, matrix C , ) .  

existence of a longitudinal correlation length in finite SOS systems at zero field. 
According to Ciach (1989, B is a solution of cosh B = D*, with D* = 2 cosh 2K - 1. 
Our extrapolated values agree very well with this exfression. We note that this 
correlation length, 611 = -(ln U ) - ’ ,  governs the decay of C with increasing IAzl, as uIAzl, 
and is not immediately related to the density profile nor to the scaling lengths found 
by Abraham (1981). appears to be a genuine intrinsic quantity either obtained by 
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m+ 0 in surfaces pinned by G or by M + 00, L + CO in surfaces at G = 0 pinned by 
walls. Only the free energy or In A,,, and /3yetr = S: (2G) appear to share thizproperty. 

Figure 11 illustrates determination of the number i ( k  = 0) for the matrix C( k = 0) = 
CO+ 2C,; we find i ( k  = 0) = to+ 2t,, t ,  = t0/2 and the extrapolations made separately 
for CO and C, are very similar. Do( k = 0) = Dho’ + 2 Or’ and are also shown. 

I 
24 t 

22 t 

-08761 

Figure 11. Parameters in the expression (3.24) for the matrix M r!ated to 6 ( k  = O ) =  
C0+2C, by (3.23); t from even and from odd Az values converges to t(m=O) = 27.9741; 
for A z  = 0, Do = Db0)+2Dh1) = -27.6226; for A z  = 1 ,  D:” = -0.873 97, D‘,” = 0. All data 
are at T = 0.3 Tc, for the range of -& as in previous figures. 

4. Discussion 

The motivation for this work has been provided by the non-analytic behaviour near 
G = O* in the gravitational potential, found by van Leeuwen and Hilhorst (1981), and 
later for the two-point functions H and C (Stecki and Dudowicz 1984). An extension 
of the asymptotic analysis of van Leeuwen and Hilhorst (1981) to the two-point 
functions has not been made and in any case the direct correlation function would 
not be expressed simply; hence we had to resort to numerical computation of all the 
quantities. An additional bonus was a possibility of obtaining sometimes several 
coefficients of the successive powers of G”* whereas analytical results would be limited 
to leading terms, if indeed they would have been obtained at all. 



786 J Stecki and J Dudowicz 

First of all we have confirmed in detail the ideas of van Leeuwen and Hilhorst 
(1981) according to which the one-point functions such as the dominant eigenvector, 
height probability and the density profile should scale with the scaling length y given 
by equation (2.9). We have found a common density profile in the variable y and we 
have extended this scaling to the local susceptibility. Thus we find universal behaviour 
for these one-point functions. The two-point function H, the density-density correlation 
function, scales with the variables y ,  and y2 in the combination Y = (yl+y2)/2, and, 
less satisfactorily, apparently also with the variable y , ,  = y2 - y , ;  in the transverse 
direction the decay of H is governed by the well known capillary length S:= 
p y / p m g A p ,  and the only new information we might add is that the effective surface 
tension depends linearly on GI” with a large coefficient. Hence the external field 
enters into the k dependence of the Fourier transform fi or ,y quite differently from 
the z dependence. The existence of a longitudinal correlatbn length in H was not 
detected with the simple means we used. The inverse of H, the direct correlation 
function C, scales with the van Leeuwen variables only in its Y dependence and then 
varies with A z  according to a simple exponential variation with a longitudinal correla- 
tion length. The latter was found to be in excellent agreement with values predicted 
from analytical results of Ciach (1985) obtained for a finite large strip in zero field 
and for another two-point function which can be related to C. 

Several qualitative features of H and C in the SOS system were already noted by 
us earlier; thus we noted that H = 0 identically for any distance in either homogeneous 
SOS phase with a Gaussian-like peak in the middle of the interface where obviously 
the density fluctuations are the largest; conversely, C does not exist in either 
‘homogeneous phase’ of the SOS system and from reasonably small positive values in 
the middle of the interface C increases indefinitely as we move into either phase 
(i.e. if both z ,  and z2 increase or if both decrease). For a lattice gas for which in the 
homogeneous phases both C and H exist and can be calculated, we found as expected 
that both H and C approached the expected values as z ,  and z2 were moved out of 
the interface zone, but in the case of C this approach was not monotonic (Stecki and 
Dudowicz 1985a, b). This qualitative picture points out special surface contributions 
to susceptibilities and H and C, which do not follow from these properties in either 
homogeneous phase. It also seems clear that, the problem being anisotropic, there 
might be a priori two correlation lengths (far away from a critical point which does 
not exist in the SOS system in any case). So far the transverse correlation length has 
been known as such since time immemorial but the longitudinal correlation length (as 
distinct from scaling lengths) proved rather elusive, both theoretically and experi- 
mentally in real systems. We hope that the longitudinal correlation length we find 
here will also be found in other cases. Finally, it is not surprising for a one-dimensional 
interface that all the quantities depend so strongly on GI”; what is then interesting 
is that at least some of the quantities exist in the limit of vanishing external field. The 
non-analyticity is displayed explicitly and, if the leading term is extracted, often a 
simple polynomial in dE results. 
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